Ball Aerospace Program Process Tailoring

Aligning Development Processes with Mission Classifications

Ball Aerospace & Technologies Corp. Proprietary Information

The information contained herein is the private property of Ball Aerospace & Technologies Corp. that is being made available to the recipient under the terms of a nondisclosure agreement or by other special arrangement. It may not be used, in whole or in part, except for the limited purpose for which it has been furnished. It may not be distributed or reproduced, except as specifically authorized by Ball Aerospace and with this legend conspicuously attached. This information is exempt from public disclosure under 5 U.S.C. 552(b)(4), and its use by Government personnel is subject to the restrictions

Agility to Innovate, Strength to Deliver

Ball Aerospace & Technologies Corp.

Purpose

 Share Ball's capability to save cost by tailoring program specific product development processes to meet customer expectations

Method

- —What is Program Process Tailoring?
- How does it work?
- How do we align expectations?

Outcome

— Understanding of customer-aligned cost-saving opportunities

Industry Mission Classification Framework Established

- Framework provided by
 - NASA NPR 8705.4, DoD Handbook 343
 - Mission Risk Planning and Acquisition Tailoring Guidelines for National Security Space Vehicles 2010 (TOR-2011(8591)-21)
 - Mission Assurance Guidelines for A-D Mission Risk Classes 2011 (TOR-2011(8591)-21)

	Class A	Class B	Class C	Class D
Mission Risk Acceptance	Lowest	Low	Moderate	Highest
National Significance	Extremely Critical	Critical	Not Critical	Not Critical
Payloads	Operational	Demonstrates Operational Utility May become Operational	Typically Experimental	Typically Experimental
Acquisition Cost	Highest	High	Medium	Lowest
Development Time	May take 4 or more years	May take 3 or more years	May take 2 or more years	May take 1 or more years
Mission Life	Long, Greater than 5 yrs (typically 8–10+ yrs)	Medium, Up to 5 years	Short, typically less than 2 years	Short, typically less than 1 year
Launch Constraints	Critical	Medium	Few	Few to none

Spectrum of Program Risk Profiles Demands Process Agility

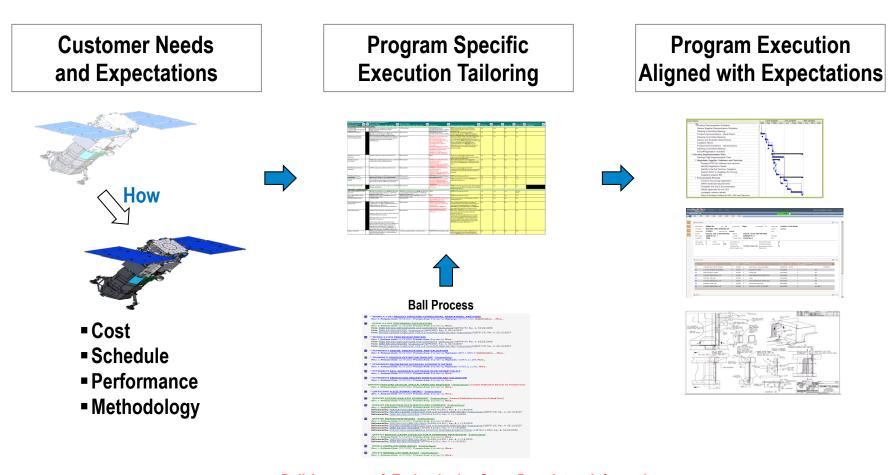
Research and Development

Development and Demonstration

Operational Systems

National Needs Programs

- Multiple variable affect the ability to tailor in alignment with customer needs
 - Complexity of mission requirements
 - Command media and organizational maturity
 - Customer confidence in cost, performance, reliability, and risk capabilities
 - Demonstrated ability to adapt to a variety of customer requirements


Program Process Tailoring Foundation

- Why Process Tailoring?
 - Meet cost point by matching customer requirements for different types of missions
 - Apply more cost effective path to same mission success endpoint
- What does Execution Tailoring mean?
 - Tailor execution strategy to save cost on low-likelihood risks
 - Same flight hardware processes with less evidence of assurance
 - No change to mission risk or probability of success
 - Greater tolerance for programmatic risk
- How does Execution Tailoring work?
 - Leverage mature processes and experience
 - Program flow down of requirements accommodates execution tailoring
 - Program specific control with documented tailoring

What is Process Tailoring?

 Ball's Program Process Tailoring system allows programs to meet the specific expectations of multiple customers with differing needs

Process Standards Ensure Quality Product Consistency

- Internal Standard examples
 - Fastener processing
 - Packaging for contamination and electrostatic discharge protection
 - Surface preparation for bonding
 - Cleaning and preparation of aluminum and aluminum alloy surfaces
 - Material handling equipment
 - Foreign object debris (FOD) prevention
 - Parts de-rating
 - Fastener torque

- External Standards
 - AS9100C Certified Quality
 Management System
 - Others as required by contract
 - Ball standard practices may exceed external standard requirements

Process Tailoring does not permit deviation from applicable standards

Distinctions between Types of Risk

Mission Risk

- Probability of inability to meet specifications on orbit
- Example: Manufacturing defect leads to reduced mission life

Programmatic Risk

- Probability of cost or schedule impact (as a result of reduced development rigor)
- Example: Program does not screen electronic parts, so part defects would be found during board or box-level functional or environmental testing.

Acquisition Risk Tolerance

- Acceptance of risk by forgoing levels of oversight of the development process in exchange from reduced development cost
- Example: Customer not on parts selection board or approver of detailed designs

Execution Tailoring Methodology

- 1. Obtain clear understanding of customer expectations and values
 - Mission needs
 - Programmatic needs
- 2. Tailor our product architectures and execution for cost control
 - **❖** Timely information and transparency balance reduced evidence of assurance
 - Mission risk mitigation aligns to performance requirements
 - Programmatic risk mitigation aligns to contract requirements
 - Fixed price contracts allow Ball to control programmatic risk
- 3. Partner with customer for shared control
 - Provide a high level of program insight
 - Provide customer timely information
 - Provide appropriate program influence and control

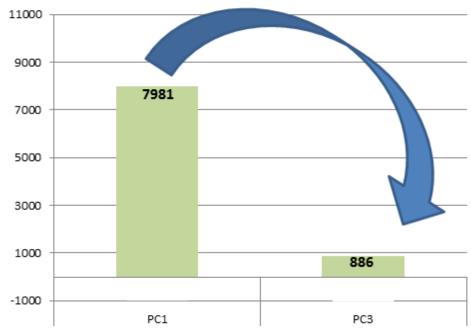
Mapping of Mission Class Maintains Acceptable Risk

Mission Risk Class	Class A	Class B	Class C	Class D	
Ball Internal Product Class or Product Type	Class 1	Class 1: Operational Class 2: Commercial	Class 3	Class 3: Enhanced D Class 4: Safety Only	
Mission Success	All Mission Requirements Met	All Mission Requirements Met			
Driving Factors	 >> mission length Custom developed Highest Cost Customer oversight Low Pf: large number of mitigations 	 > mission length Heritage developed Lower cost Customer Insight/ Oversight Low Pf: Part quality, margins, redundancy 	 < mission length Heritage developed Low cost Customer insight Corporate practices Low Pf: Part quality, test actions 	 << mission length Cubesat/Prototype Lowest cost Corporate practices Low Pf: Threshold and safety focus 	

What Changes Across Product Class?

	Product Class	1	2	3	4	5
•	Design Integrity	Comprehensive design practice using state-of-the-art tools. High designer qualifications			strong overall responsibility a	and accountability
3.1	Design Review	Peer, MA, Industry Partner, Program designated reporting and review	Peer, MA, Program lesignated review of <i>Ball</i> format	Peer, MA on critical areas, Program insight through hands-on interaction	Peer, Program acceptance of final test	
	Released Engineering	Production Release Program defined reporting	Production Released Minor adjustment of Ball formatted reporting	Production Release Ball format and control	Prod. or <i>Limited</i> Release Ball format and control	
,	System Engineering	Tech/architecture authority and control, Risk/ Requirement implementation, Program V&V and planning under revision control		Tech/Architecture authority, Risk/Req. Implementation, BATC V&V, Planning documented	Best Engineering Practice as required	
	Evidence of Assurance - Level 1 2 3 4 5	program driven (format and method) verification att	Comprehensive BATC driven verification tributes with appropriate program additions and deliverables	BATC Engineering attribute verification with BATC MA verification for critical areas	Best Engineering practice	Program specific Peer review on critical areas
	Mfg Process	Comprehensive, approved manufacturing processes, implemented by highly trained and appropriately certified practitioners		Build documentation formality streamlined		
מ	Build Control	State-of-the-art Electronic Manufacturing Control System(s) , released engineering BOMs and procedures		Released engineering with streamlined build docs		
מומסנמו	Test	released plans, full facilities and test readiness you-fly reviews and approvals by Program documented		Comprehensive test-like- you-fly approach, documented test plans, and test readiness <i>reviews</i>	Thorough Test like you fly approach with subsystem test reductions	
	Material and Subcontractor Approval	Parts approval board, Program Approved Parts List (PAPL), approved suppliers, Full MRP		Approval managed through PAPL, approved suppliers, Full MRP	Lead Eng. approval, PAPL used for visibility, P-Card option, MRP	

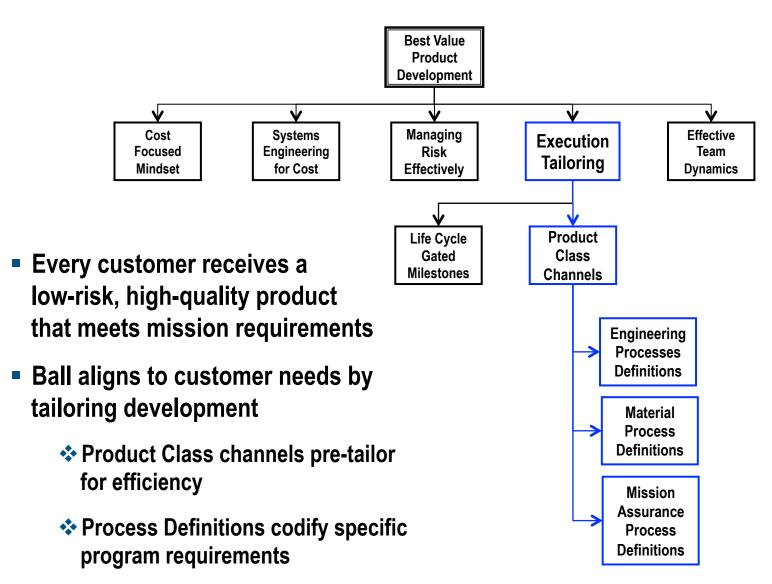
← Manufacturing →


Specific Example of Process Tailoring and Cost Savings

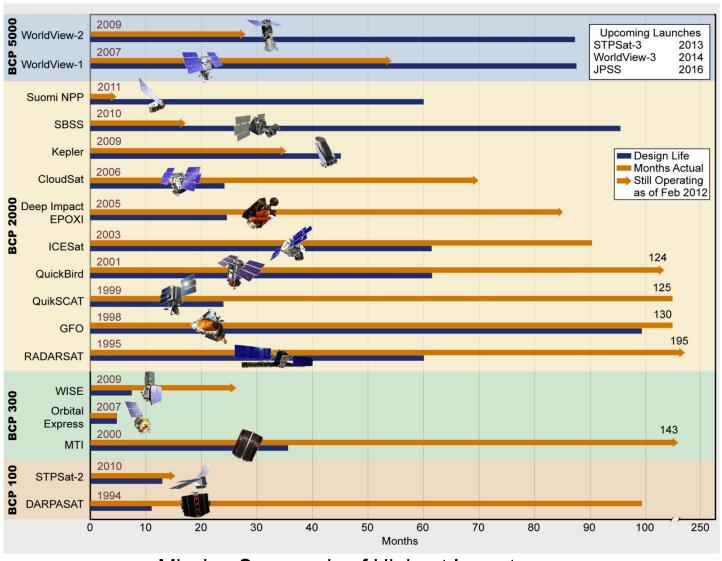
Activity	PC1	PC2	PC3
EE	FMEA/CIL required to	FMEA/CIL required to	FMEA/CIL required to
Reliability	demonstrate credible SPFs	demonstrate credible SPFs	demonstrate that a failure
(FMEA/CIL)	are controlled/mitigated, and no fault propagation to redundant hardware.	are controlled/mitigated, and no fault propagation to redundant hardware.	cannot propagate across external interface(s).

Very high leverage of existing designs and procurements

- High end-item verification ability
- Low evidence of assurance requirements
- Low required oversight


Reliability (Bus): Hours for BCP

Ball Aerospace & Technologies Corp. Proprietary Information



Execution Tailoring is Part of a Portfolio of Best-Value Practices to Meet Cost Objectives

Mission Success is the Goal of Process Implementation

Mission Success is of Highest Importance

Questions?

The Spectrum of Program Risk Profiles Demands Process Agility

Agility to Innovate, Strength to Deliver